Explicit n-descent on elliptic curves III. Algorithms

نویسندگان

  • John Cremona
  • T. A. Fisher
  • C. O'Neil
  • D. Simon
  • M. Stoll
چکیده

This is the third in a series of papers in which we study the n-Selmer group of an elliptic curve, with the aim of representing its elements as curves of degree n in Pn−1. The methods we describe are practical in the case n = 3 for elliptic curves over the rationals, and have been implemented in MAGMA. One important ingredient of our work is an algorithm for trivialising central simple algebras. This is of independent interest: for example, it could be used for parametrising Brauer-Severi surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Minimisation and Reduction of 2-, 3- and 4-coverings of Elliptic Curves

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

1 2 A ug 2 00 9 MINIMISATION AND REDUCTION OF 2 - , 3 - AND 4 - COVERINGS OF ELLIPTIC CURVES

In this paper we consider models for genus one curves of degree n for n = 2, 3 and 4, which arise in explicit n-descent on elliptic curves. We prove theorems on the existence of minimal models with the same invariants as the minimal model of the Jacobian elliptic curve and provide simple algorithms for minimising a given model, valid over general number fields. Finally, for genus one models def...

متن کامل

EXPLICIT n-DESCENT ON ELLIPTIC CURVES I. ALGEBRA

This is the first in a series of papers in which we study the n-Selmer group of an elliptic curve, with the aim of representing its elements as genus one normal curves of degree n. The methods we describe are practical in the case n = 3 for elliptic curves over the rationals, and have been implemented in MAGMA .

متن کامل

ar X iv : m at h / 04 03 11 6 v 1 [ m at h . N T ] 6 M ar 2 00 4 Elliptic Curves x 3 + y 3 = k of High Rank

We use rational parametrizations of certain cubic surfaces and an explicit formula for descent via 3-isogeny to construct the first examples of elliptic curves Ek : x 3 + y = k of ranks 8, 9, 10, and 11 over Q. As a corollary we produce examples of elliptic curves over Q with a rational 3-torsion point and rank as high as 11. We also discuss the problem of finding the minimal curve Ek of a give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015